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ABSTRACT
Mangrove forests are the main carbon absorption and sequestration source, serving as a typical 
ecosystem in coastal areas. Despite numerous studies on temporal changes in carbon storage, there 
is limited information on the examination of gross primary productivity (GPP) in mangrove forests. 
GPP is the overall quantity of organic matter produced in the vegetation through photosynthesis, 
including the portion used for respiration. In the context of global warming and climate change, 
GPP is frequently used as an indicator of the total amount of carbon dioxide (CO2) assimilated by 
the ecosystem, particularly vegetation. The advancement of geographic information systems (GIS) 

and remote sensing methods has enabled the 
estimation of GPP rates on a spatial-temporal 
basis. Therefore, this study aimed to estimate 
and explore the relationship between GPP and 
vegetation density in the mangrove forest of 
Ujung Pangkah, Indonesia. Multi-temporal 
Sentinel-2 image data from 2018 to 2022 
were used for analysis, while the Vegetation 
Production Model (VPM) was applied to 
calculate GPP. The results showed a steady 
increase in average GPP from 1997.91 grC m-2 
yr-1 in 2018 to 2290.09 grC m-2 yr-1 in 2022. The 
increase showed significant improvement in the 
condition of the Ujung Pangkah mangrove forest. 
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This was further confirmed by the strong relationship between GPP and the Normalized Difference 
Vegetation Index (NDVI), which was used to determine vegetation density (R2>0.9, p<0.05). 

Keywords: Gross primary productivity, mangrove, photosynthesis, Sentinel-2, Ujung Pangkah

INTRODUCTION

Global warming is the catalyst for climate change, negatively affecting land and marine 
environments. This phenomenon causes high sea surface temperatures, changes in rainfall 
patterns, extreme weather conditions, and cyclonic storms. The most concerning increase 
in emissions is carbon dioxide (CO2) due to higher concentration and long lifetime in the 
atmosphere. According to a recent World Meteorological Organization (WMO) report, 
the global atmospheric CO2 concentration has reached a new high record of 415.7 ± 0.2 
ppm in 2021 (Tang et al., 2023). On average, the increase in global CO2 concentration 
in the last 2 decades is approximately 2.25 ppm/year (Friedlingstein et al., 2022). This 
continuous increase is significantly attributed to uncontrolled consumption of fossil fuels 
and massive land cover changes (Ayompe et al., 2020; Basu et al., 2020; Goldstein et al., 
2020; Yoro & Daramola, 2020). The mangrove ecosystem has been proven effective due 
to its high carbon storage capacity.

The mangrove ecosystem is estimated to have five times the carbon storage capacity of 
terrestrial rainforest per hectare (Donato et al., 2011), with an optimal carbon sequestration 
function of approximately 77.9% (Chatting et al., 2022). Furthermore, high productivity 
combined with slow soil decay rates improves the ability to capture and preserve organic 
carbon (Alongi, 2012; Kauffman & Bhomia, 2017;  Bacar et al., 2023; Hidayah et al., 
2022). Indonesia has approximately 2.95 million ha of mangrove forest, accounting for 
20.09% of the world’s mangrove area (Bunting et al., 2022). 

Although mangrove forests play significant ecological roles in coastal environments, 
this ecosystem is under threat from illegal logging, deforestation, and changes in land 
use. According to the United Nations Statistics geographic regions, the estimated extent 
of mangroves worldwide in 1996 was 15.26 million ha. In 2020, deforestation decreased 
to 14.73 million ha, with a rate of mangrove loss of 37,464 ha/year. During this period, 
the area of mangroves in Indonesia decreased by over 174,000 ha, from 3.12 million ha in 
1996 to 2.95 million ha in 2020 (Bunting et al., 2022). Further studies showed that 70% 
of mangroves capable of producing organic compounds were deforested, and 30% were 
degraded (Hidayah et al., 2022; Bunting et al., 2022). 

In this context, primary productivity is essential for the formation of energy-rich 
organic compounds from inorganic compounds. Gross and net primary productivity are 
both components of primary productivity. Net Primary Productivity (NPP) is the amount 
of primary productivity that remains after being used by organisms for respiration. 
Meanwhile, Gross Primary Productivity (GPP) is the total amount of organic compounds 
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formed in organism tissues during photosynthesis (Chapin et al., 2006; Wang et al.,2012). 
GPP is considered the total value of carbon fixation in terrestrial ecosystems through 
photosynthesis in a specific period, which is used to quantify the amount of CO2 
assimilated by vegetation (Nuarsa et al., 2018), particularly in mangrove ecosystems 
(Wang et al., 2012). 

Several studies have been carried out on temporal changes and carbon stocks in 
mangrove biomass and sediment in Indonesia (Cameron et al., 2019; Harefa et al., 2022; 
Lukman et al., 2022; Pricillia et al., 2021; Trissanti et al., 2022). Allometric equations are 
commonly used to calculate carbon stocks in mangrove biomass (Hidayah et al., 2022; 
Indrayani et al., 2021; Suardana et al., 2023), with the regular procedure dependent on 
biophysical measurements. These include tree diameter at breast height, tree height, or 
wood density of various plant species, thereby limiting extrapolation to regional scales. This 
study used a combination of GIS and remote sensing methods to estimate GPP over time 
through the relationship with the fraction of absorbed photosynthetically active radiation 
(f-APAR) driven by vegetation indexes (Nuarsa et al., 2018). According to previous studies, 
the Moderate-resolution Imaging Spectroradiometer (MODIS) data were used to calculate 
GPP on vast terrestrial and coastal forest ecosystems (Kanniah et al., 2021; Turner et al., 
2003). Landsat data were more frequently used for the estimation of other land cover types 
(Celis et al., 2023; Nuarsa et al., 2018; Raj et al., 2020; Shirkey et al., 2022). Therefore, 
this study aimed to estimate the GPP of Ujung Pangkah in East Java, Indonesia, using 
Sentinel-2 satellite data from 2018 to 2022. The analysis focused on three main objectives: 
to measure the change in the mangrove area. Second, analysis was conducted to estimate 
Ujung Pangkah’s annual GPP using VPM, and third, to investigate the relationship between 
GPP and vegetation density. 

MATERIAL AND METHODS

Study Location

Ujung Pangkah mangrove forest is located at the estuary of Bengawan Solo River, one 
of the longest and largest rivers in Indonesia. Geographically, this study area is located 
on Java Island’s north coast, in the administrative area of Gresik Regency, East Java 
Province, as shown in Figure 1. Since 2021, Indonesia’s Ministry of Environment and 
Forestry has designated this location as an Essential Ecosystem Area. The initiative is part 
of the Indonesian government’s efforts to preserve wetland areas as defined by the Ramsar 
Convention, a UN-initiated intergovernmental convention for wetland conservation. Ujung 
Pangkah is located close to Gresik City, which is one of the largest industrial areas in 
Eastern Indonesia. This shows that factory operations in the area may emit excessive CO2 
into the atmosphere daily. Therefore, there is a need for more carbon-absorbing areas to 
balance the atmospheric carbon cycle.
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Data Description

The primary data used in this study was a set of multi-spectral Sentinel-2 Level 1C satellite 
images acquired from 2018 to 2022. These images were collected using the Google Earth 
Engine (GEE) platform https://developers.google.com/earth-engine/datasets/catalog/
sentinel. European Space Agency (ESA) administered this satellite under the Copernicus 
Land Monitoring project. Sentinel-2 comprised two satellites with similar characteristics 
(Sentinel 2A and 2B), each equipped with a 13-band MSI (Multi-Spectral Instrument) 
optical sensor that covers the visible light to infrared spectrum. Every Sentinel-2 image 
covered a 290-kilometer strip, combined with its spatial resolution of 10 to 60 meters per 
pixel and 15 days of temporal resolution (Table 1).

Image processing was performed using the cloud computing platform GEE, accessible 
at https://earthengine.google.com. The investigation used a Sentinel-2 harmonized dataset, 
which included Surface Reflectance (SR) values. Annually, the analysis used composites 
obtained from data gathered from June to October, which was consistent with the dry 
season characterized by low cloud cover. Initially, only images that had a cloud cover of 
less than 30% were selected. Median composites were created by averaging the values of 

Figure 1. Study site: (A) East Java Province of Indonesia, (B) The location of Ujung Pangkah in East Java 
Province, (C) Coastal study sites in Ujung Pangkah with mangrove forests extracted from Sentinel-2 image
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each band over the complete dataset during this period. The method was used to mitigate 
the influence of cloud cover before categorization and subsequent analysis. Furthermore, 
this study used local monthly average temperature data from the meteorological station 
BMKG (Meteorological, Climatological, and Geophysical Agency) Sangkapura, available 
at https://dataonline.bmkg.go.id/data_iklim. Monthly sun radiation statistics data were also 
acquired from the European Centre for Medium-Range Weather Forecasts (ECMWF), 
accessible at https://developers.google.com/earth-engine/datasets/catalog. 

Gross Primary Productivity (GPP) Calculation

Empirical models, such as the Satellite-based Light-Use Efficiency (LUE), are used to 
estimate GPP due to the challenges associated with direct measurement. According to 
the LUE model, carbon exchange can be determined through the quantity of light energy 
absorbed by vegetation and the effectiveness of converting carbon (Xiao et al., 2005). 
Vegetation Production Model (VPM) is one of the LUE models commonly used to 
estimate GPP based on remote sensing image data as well as the effects of temperature, 
water stress, and phenology. In VPM, three sets of parameters, namely light temperature 
parameters (T-scalar), water parameters (W-scalar), and leaf phenology (P-scalar), are 
used to estimate GPP (Xiao et al., 2005). Previous studies have confirmed the accuracy 
of GPP calculations derived from satellite image data using VPM estimation. The results 
show a strong correlation with CO2 eddy flux towers, a widely used micro-meteorological 
method that measures the vertical concentration gradients of Green House Gases (GHGs) 
continuously (Huang et al., 2022; Kumar et al., 2017; Peddinti et al., 2020). Details of 

Table 1 
Spectral and spatial characteristics of Sentinel-2 imagery data

Bands Wavelength (μm) Spatial Resolution (m)
Band-1 Coastal Aerosol 0.433–0.453 60
Band 2: Blue 0.458–0.523 10
Band 3: Green 0.543–0.578 10
Band 4: Red 0.650–0.680 10
Band 5: Vegetation Red Edge 0.698–0.713 20
Band 6: Vegetation Red Edge 0.733–0.748 20
Band 7: Vegetation Red Edge 0.765–0.785 20
Band 8: NIR 0.758–0.900 10
Band 8A: Vegetation Red Edge 0.855–0.875 20
Band 9: Water Vapour 0.930–0.950 60
Band 10: SWIR Cirrus 1.365–1.385 60
Band 11: SWIR 1.565–1.655 20
Band 12: SWIR 2.100–2.280 20

Source: Sentinel-2 User’s Guide (https://sentinels.copernicus.eu/web/sentinel/user-guides/sentinel-2-msi/overview
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Sentinel-2 image processing using GEE to calculate mangrove area and estimate annual 
GPP are systematically presented in Figure 2. 

Sentinel-2 Image Processing

This study analyzed satellite images to acquire the remote sensing indexes required for 
calculating GPP. Initially, the pre-processing stage included using the GEE platform to 
mask clouds and perform rectification. This was followed by the computation of the 
Normalized Difference Vegetation Index (NDVI), Enhanced Vegetation Index (EVI), and 
Land Surface Water Index (LSWI). NDVI was used to differentiate mangrove vegetation 
from other forms of land cover. This vegetation index was computed using the proportion 
of near-infrared (NIR) of band eight and the red spectrum of band four from the Sentinel-2 
image. The following Equation 1 was used to compute NDVI from image data.

NDVI =
𝑁𝑁𝑁𝑁𝑁𝑁 − 𝑅𝑅𝑅𝑅𝑅𝑅
𝑁𝑁𝑁𝑁𝑁𝑁 + 𝑅𝑅𝑅𝑅𝑅𝑅

        [1]

Figure 2. Flow chart of GPP data analysis using Vegetation Photosynthesis Model (VPM)
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EVI was used due to the linear relationship with the leaf green index derived from 
multi-spectral data and the ability to determine changes in the cover of plants (Xiao et al., 
2004). This index used a blue band to fix the atmosphere as well as blue, red, and NIR 
bands to observe the changing reflectance of soil and the canopy background (Nuarsa et 
al., 2018). Subsequently, EVI was calculated using three specific bands from Sentinel-2, 
including NIR (band 8), red (band 4), and blue (band 2). The values of EVI varied from 
-1 to +1, which was calculated using Equation 2 provided by Huete et al. (1997).

EVI = 2.5 𝑥𝑥
𝜌𝜌𝜌𝜌𝑁𝑁𝑁𝑁 − 𝜌𝜌𝑁𝑁𝑅𝑅𝑅𝑅 

𝜌𝜌𝜌𝜌𝑁𝑁𝑁𝑁 + (6 𝑥𝑥 𝜌𝜌𝑁𝑁𝑅𝑅𝑅𝑅 − 7.5 𝑥𝑥 𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝑅𝑅) + 1 
   [2]

An additional index required for VPM, LSWI, was calculated using NIR (band 8) and 
SWIR (band 11) of the Sentinel-2 image. Increasing the amount of water in the leaf or 
the moisture in the soil led to greater absorption of shortwave infrared (SWIR) light and 
reduced reflection of NIR light. The value of LSWI ranged from -1 to +1, calculated using 
Equation 3 provided by Xiao et al. (2005).

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 =
𝜌𝜌𝜌𝜌𝑁𝑁𝑁𝑁 − 𝜌𝜌𝜌𝜌𝜌𝜌𝑁𝑁𝑁𝑁
𝜌𝜌𝜌𝜌𝑁𝑁𝑁𝑁 + 𝜌𝜌𝜌𝜌𝜌𝜌𝑁𝑁𝑁𝑁

       [3]

Vegetation Production Model (VPM)

In VPM, the T-scalar parameter was used to determine photosynthesis temperature using 
the Terrestrial Ecosystem Model (Equation 4) (Raich, 1991):

𝑇𝑇 − 𝜌𝜌𝑠𝑠𝑠𝑠𝜌𝜌𝑠𝑠𝑁𝑁 =
(𝑇𝑇 − 𝑇𝑇𝑇𝑇𝑁𝑁𝜌𝜌) 𝑥𝑥 (𝑇𝑇 − 𝑇𝑇𝑇𝑇𝑠𝑠𝑇𝑇𝜌𝜌)

[(𝑇𝑇 − 𝑇𝑇𝑇𝑇𝑁𝑁𝜌𝜌) 𝑥𝑥 (𝑇𝑇 − 𝑇𝑇𝑇𝑇𝑠𝑠𝑥𝑥)]− (𝑇𝑇 − 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇)2  [4]

The terrestrial ecosystem model measured the temperature for photosynthesis, often 
known as Tscalar, in degrees Celsius (°C). At this point, T represents the mean monthly 
temperature obtained from the meteorological station BMKG Sangkapura. This study 
used the following settings for Tmin, Tmax, and Topt at 0oC, 48oC, and 28oC, respectively 
(Nuarsa et al., 2018). Additionally, the W-scalar parameter was applied to quantify the 
impact of water on vegetation photosynthesis, as stated by Nuarsa et al. (2018). The 
calculation of this parameter was derived from LSWI obtained from the analysis of the 
Sentinel-2 image, as shown in Equation 5. 

𝐿𝐿 − 𝜌𝜌𝑠𝑠𝑠𝑠𝜌𝜌𝑠𝑠𝑁𝑁 =
1 + 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿

1 + 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑇𝑇𝑠𝑠𝑥𝑥
       [5]

The final parameter in VPM was P-scalar, a leaf phenology value used to evaluate 
the influence of leaf age on photosynthesis at the canopy level. The duration of the leaf 
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lifespan determined the P-scalar value. For a canopy dominated by leaves with a one-year 
life expectancy, P-scalar was calculated as a linear function of two distinct phases using 
Equation 6 provided by Xiao et al. (2005).

P − scalar =
1 + 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿

2
       [6]

The next calculation was performed to determine light use efficiency ( g), which 
was the function of temperature (Tscalar), water effect on photosynthesis (Wscalar), and leaf 
phenology (Pscalar), as expressed in Equation 7 (Xiao et al., 2005). In Equation 7,   is the 
maximum light use efficiency and is equal to 0.40 gC mol-1

𝜀𝜀g = 𝜀𝜀0 × Tscalar × Wscalar × Pscalar  [7]

Equation 8 uses incoming solar radiation (R) data to calculate the photosynthetic active 
radiation (PAR) in µmol/m2sec. Equation 8 estimates that approximately 45% of solar 
radiation (W m-2) is transformed into PAR. Moreover, the final factor in determining GPP 
is F-PARchl, which represents the fraction of photosynthetic active radiation absorbed by 
chlorophyll. The VPM model assumes that F-PARchl in photosynthesis is a linear function 
of EVI, with a coefficient A set to 1 (Equations 8 and 9). 

𝑃𝑃𝑃𝑃𝑅𝑅 = 0.45 ×  𝑅𝑅                                                                                                                                                     

 (8) 

𝑓𝑓𝑃𝑃𝑃𝑃𝑅𝑅𝑠𝑠ℎ𝜌𝜌 = 𝐸𝐸𝐸𝐸𝐿𝐿 ×  𝑃𝑃               

      [8]
𝑃𝑃𝑃𝑃𝑅𝑅 = 0.45 ×  𝑅𝑅                                                                                                                                                     

 (8) 

𝑓𝑓𝑃𝑃𝑃𝑃𝑅𝑅𝑠𝑠ℎ𝜌𝜌 = 𝐸𝐸𝐸𝐸𝐿𝐿 ×  𝑃𝑃                     [9]

The VPM model developed to estimate GPP according to PAV (photosynthetically 
active vegetation) and NPV (non-photosynthetic vegetation) is determined using Equation 
10 (Xiao et al., 2005).

𝐺𝐺𝑃𝑃𝑃𝑃 = 𝜀𝜀g x 𝑓𝑓𝑃𝑃𝑃𝑃𝑅𝑅𝑠𝑠ℎ𝜌𝜌 ×   𝑃𝑃𝑃𝑃𝑅𝑅         [10]

RESULTS AND DISCUSSION

Temporal Change of Mangrove Area

The use of multitemporal satellite images in this study is exceptionally beneficial to 
understanding the dynamics of change in the mangrove forest of Ujung Pangkah. As 
a coastal ecosystem, mangrove vegetation grows in response to temperature, humidity, 
rainfall, and sunlight intensity. This ecosystem can be influenced by coastal erosion, which 
naturally reduces the area of mangrove forests, while accretion or sedimentation contributes 
to increasing capacity. 

This study used NDVI to identify mangrove land covers due to the ability to 
differentiate between vegetation and other types of land cover. The value ranged from -1 
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to 1, where vegetation was identified with NDVI > 0. Furthermore, using a supervised 
classification method, it was possible to identify mangrove vegetation based on unique 
growth patterns surrounding river estuaries. Figure 3 shows the map illustrating the 
distribution of mangroves in Ujung Pangkah. 

According to the results of NDVI analysis in Table 2, the condition of the mangrove 
forest in Ujung Pangkah showed signs of enhancement during the past 5 years. This was 
supported by at least two indicators, including the expansion of mangrove coverage and 
the corresponding rise in average and maximum NDVI values. The area was 1187.63 

Figure 3. Distribution Map of Mangrove Forest of Ujung Pangkah East Java from 2018–2022

Table 2
Statistical parameters of NDVI and area of mangrove forest in Ujung Pangkah

Observation Year
NDVI Statistics Total Area 

(Ha)Min Max Mean Stdev
2018 -0.32 0.61 0.48 0.25 1187.63

2019 -0.31 0.65 0.52 0.19 1217.21

2020 -0.25 0.70 0.48 0.17 1229.69

2021 -0.35 0.75 0.57 0.17 1239.24

2022 -0.35 0.77 0.56 0.17 1262.25
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Ha in 2018 and gradually increased to 1262.25 Ha by 2022, with the expansion strongly 
correlated to a high canopy density. Despite fluctuations in the average NDVI value, the 
maximum NDVI value gradually increased from 0.61 in 2018 to 0.77 in 2022.

The trend towards improving the condition of the mangrove forest ecosystem in 
Ujung Pangkah was supported by the position at Bengawan Solo estuary. The high rate of 
sedimentation in the year produced mud deposits rich in organic material, which served as a 
medium for vegetation growth. Suitable environmental conditions, as well as the absence of 
illegal logging or land conversion by local residents, played an important role in improving 
the condition of the mangrove ecosystem (Hagger et al., 2022). In recent years, the trend 
of expanding mangrove forest areas observed by medium-resolution satellite images was 
detected in several locations. These included Surabaya east coast and Teluk Pangpang of 
East Java, Indonesia; Thane Creek of Mumbai, India; than Hoa Estuary of Vietnam and 
Jiulong river estuary of China (Hidayah et al., 2022; Hidayah et al., 2024; Nguyen et al., 
2020; Azeez et al., 2022; Wang et al., 2018).

Fluctuations in Yearly Temperature

Data on weather and environmental conditions at the research site were required to 
determine GPP using VPM. The annual temperature parameters obtained from Sangkapura 
weather station showed that from 2018 to 2022, the average annual air temperature in 
Ujung Pangkah mangrove forest ranged from 28.23oC to 28.53oC, with a small standard 
deviation of 0.46oC to 0.83oC. However, the average annual temperatures measured in the 
Ujung Pangkah mangrove forest area showed no significant difference (One Way ANOVA, 
p > 0.05, df = 4). 

Figure 4 shows that the average annual temperature fluctuates over a 5-year period. 
The average annual temperature in 2018 was 28.50oC, which increased to 28.53oC in 2021 
before decreasing to 28.36oC in 2022. Based on the results, 2018 had the smallest monthly 
temperature fluctuations (σ = 0.46), while the highest value occurred in 2020 (σ = 0.83). 
According to the Indonesian climate, the air temperature is often higher during the peak of 
the dry season, which occurs between July and September, compared to the rainy season 
(February). These parameters, particularly air temperature, often influence the growth and 
formation of mangrove vegetation (Duke et al., 1998; Hutchison et al., 2014). Temperature 
is essential in physiological processes such as photosynthesis and respiration (Bernacchi et 
al., 2001). Therefore, optimum mangrove growth requires an average temperature of over 
20oC and seasonal differences of no more than 5oC (Quisthoudt et al., 2012).  

Estimation of Annual GPP 

During the 5 years of observation, GPP calculations estimated using VPM produced 
distinctive results. At the start of observations in 2018, GPP in Ujung Pangkah mangrove 
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forest ranged from 0.50 grC m-2 yr-1 to 4059.93 grC m-2 yr-1, with an average of 1997.90 
grC m-2 yr-1. Meanwhile, in 2022, the final year of measurements, it ranged from 0.58 grC 
m-2 yr-1 to 4056 grC m-2 yr-1, with the average increase to 2290.09 grC m-2 yr-1. 

The results showed that the expansion of the mangrove forest area directly impacted 
the rise in total (tC yr-1). Table 3 shows the dynamics of changes in the GPP of the Ujung 
Pangkah mangrove forest, while spatial distribution based on Sentinel-2 image from 
2018–2022 is presented in Figure 5. The increase in GPP can be attributed to the area’s 
improving mangrove ecosystem, which significantly contributes to high vegetation 
productivity, followed by canopy size and tree density growth. This phenomenon leads to 
improved Fraction of Absorbed Photosynthetically Active Radiation (fAPAR) and higher 
LUE, contributing to an increase in GPP (Zheng & Takeuchi, 2021).

During 5 years of observations using Sentinel-2 image, the Ujung Pangkah mangrove 
forest was dominated by areas with GPP in the range of 2401–3200 grC m-2 yr-1, covering 
394.8 ha to 661.80 ha, or approximately 33.34%–53.38% of the total mangrove area each 
year. Meanwhile, areas with GPP in the range 3201–4010 grC m-2 yr-1 had the lowest 
percentage over the same period, ranging from 29.85% to 46.53% (Table 3). Based on 
Figure 5, changes in GPP occurred along the edges of the Ujung Pangkah mangrove 
forest, particularly to the east and north, which was predominantly dominated by GPP 
from 0.5 to 800 gr m-2 yr-1. 2018, the mangrove area with GPP 0.5 to 800 grC m-2 yr-1 
was approximately 307.53 ha. In subsequent years, the area of mangroves with low GPP 
decreased, reaching 93.38 ha in 2022 (Table 4). Although not excessively large, the area 

Figure 4. Monthly temperature fluctuations in the Ujung Pangkah mangrove forest area
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Table 3 
Annual GPP of Ujung Pangkah mangrove forest from Sentinel-2 Images 2018–2022 

Year
GPP (grC m-2 yr-1)

Total GPP (tC yr-1)
Min Max Mean Stdev

2018 0.497 4053.97 1997.91 844.87 23.728
2019 0.655 3645.43 1909.96 796.96 23.248
2020 0.632 3547.94 2022.25 773.58 24.867
2021 0.978 3893.96 2137.87 746.15 26.493
2022 0.508 4056.06 2290.09 689.33 28.907

Figure 5. Annual GPP change in Ujung Pangkah mangrove forest East Java 2018–2022

Table 4
Total mangrove area covered based on GPP range

GPP Range (grC m-2 
yr-1)

Mangrove Area (Ha)

2018 2019 2020 2021 2022

0.5–800 307.53 150.19 148.24 79.48 93.38

801–1600 158.86 173.46 183.43 143.86 149.58

1601–2400 291.4 305.27 353.51 308.94 438.46

2401–3200 394.8 552.96 501.31 661.8 536.08

3201–4010 29.85 35.92 42.93 45.62 46.53

Total 1185.44 1217.8 1229.42 1239.7 1264.83
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Figure 6. The dynamic of mangrove area based on GPP of Ujung Pangkah mangrove forest 

of mangrove forest with the highest GPP interval in this study (3201–4010 grC m-2 yr-
1) increased from 29.85 ha (2.58% of the total area) in 2018 to approximately 46.53 ha 
(3.68%) in 2022. The estimation of GPP provided information about mangrove health in 
terms of photosynthetic efficiency and carbon sequestering (Kumar & Das, 2023). Further 
investigation confirmed a clear indication of improvements in the mangrove health of Ujung 
Pangkah. The phenomenon was observed by a consistent decrease in mangrove area with 
GPP in low intervals, namely 0.5–800 grC m-2 yr-1 and 801–1600 grC m-2 yr-1. This was 
followed by an increase in GPP at higher intervals, namely 1601–2400 grC m-2 yr-1 and 
3201–4010 grC m-2 yr-1, respectively (Figure 6). 

Several studies have emphasized GPP as an essential parameter in the assessment of 
the global carbon budget of mangrove ecosystems (Beer et al., 2010; Alongi, 2014; Zheng 
& Takeuchi, 2022). Presently, the primary methods for determining forest GPP include 
direct observations, flux tower methods, and remote sensing models. The direct measuring 
method assesses leaf photosynthesis within a controlled laboratory setting. However, it is 
impractical to quantify the gross primary productivity (GPP) of forests across extensive 
areas (Zhao et al., 2023). The flux tower approach quantifies the exchange of carbon 
dioxide (CO2) between ecosystems and the atmosphere by employing eddy correlation 
(EC) techniques. This method requires the collection of continuous observation data. 
Nonetheless, the number of operational flux tower sites is currently limited, and they have 
limited availability over the globe (Wang et al., 2019; Gnanamoorthy et al., 2020). The 
estimation of GPP using remote sensing data depends on the light-use efficiency (LUE) 
under various environmental circumstances and ecosystem structures (Z. Zhang et al., 
2023). Additionally, global or regional GPP estimations can be derived from site-level 
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GPP observations through spatial extrapolation using remote sensing models (Huang et 
al., 2019; Markiet & Mottus, 2020; Y. Zhang et al., 2023). 

Utilizing remote sensing techniques to implement modeled GPP has the potential to 
enhance and expand the investigation of carbon processes in mangroves on a larger scope. A 
comparison of the modeled GPP with in-situ flux tower data is required to assess its validity. 
Due to the absence of flux tower data near the location of this study, the comparison cannot 
be done. However, the GPP estimation of this study in the Ujung Pangkah mangrove forest 
was not significantly different and remained within the confidence interval of measurement 
results obtained from flux-tower measurements in multiple locations; for example, GPP 
measurements in Zhangjiang, China, reported an average result of 1729 grC m-2 yr-1 to 
1924 grC m-2 yr-1 (Li et al., 2015). Meanwhile, GPP measurements in India’s Picharam 
mangrove forest revealed slightly higher results, around 2305 grC m-2 yr-1 (Gnanamoorthy 
et al., 2020). However, measurements in the Sunderbans obtained lower results of 1271 
grC m-2 yr-1 (Rodda et al., 2016).

Variations in GPP estimates across sites could be attributed to differences in climate-
hydrological conditions, mangrove species, and age (Li et al., 2015). Meanwhile, several 
factors influenced these variations at the same site, including forest vegetation structure and 
stand parameters such as stem size, canopy cover, basal area, leaf area index, and vegetation 
density (Kanniah et al., 2021). Several studies also reported that specific environmental 
variables such as high salinity and extremely low temperatures could limit GPP (Inoue et 
al., 2022; Krauss et al., 2008; Reef & Lovelock, 2015).  

Relationship Between NDVI and GPP

Further analysis was conducted to determine the relationship between mangrove NDVI 
and GPP. Moreover, NDVI was selected over other vegetation indexes because of its 
wide application to estimate mangrove forest density based on canopy cover (Razali et 
al., 2020; Zaitunah et al., 2021; Zhao & Qin, 2020). Despite accuracy issues caused by 
weather disturbances, satellite movement, and zonal peak angle, which interfered with the 
vegetation canopy reflectance response signal (Rafique et al., 2016), NDVI was extensively 
used to understand the spatiotemporal pattern of vegetation cover change (Kaufmann et 
al., 2003; Wang et al., 2021). This study modeled the relationship between NDVI and GPP 
using linear regression (Figure 7).

Based on the regression model, NDVI had a significant influence on GPP. This was 
explained by the consistency of linear regression results across observation years, with 
a coefficient of determination (R2) greater than 0.90, indicating that NDVI showed an 
adequate indicator for estimating GPP. Vegetation indexes, such as NDVI, were used in 
multi-channel image processing to show aspects of vegetation density or other density-
related characteristics, such as biomass and chlorophyll concentration. A high vegetation 
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index value showed that the area under observation had elevated levels of greenness, 
such as dense forest areas. Meanwhile, a low vegetation index value showed a decrease 
in vegetation greenness and cover.

 It is noteworthy that GPP has more direct relations to the photosynthesis rate, 
leaves, and biomass growth. In relation to GPP, NDVI primarily indicates vegetation 
coverage and chlorophyll content without a direct relationship to vegetation photosynthesis 
as the primary parameter in the LUE model used to calculate GPP in this study. Many 
studies have discovered that biophysical conditions have a significant impact on NDVI in 
mangrove ecosystems (Alongi, 2022; Hidayah et al., 2022; Lukman et al., 2022; Hidayah et 
al., 2024). Furthermore, NDVI in mangroves provides a comprehensive view of ecosystem 
conditions. Accordingly, NDVI trends fluctuate in response to meteorological factors, 
such as temperature and precipitation (Ichii et al., 2022). Given the positive results of this 
study in modeling the relationship between NDVI and GPP, it can be argued that spatial 
and temporal changes in NDVI can be used as an observational proxy for studying global, 
regional, and temporal changes in GPP.

Previous studies discovered that biophysical conditions had a significant impact on 
NDVI in mangrove ecosystems (Alongi, 2022; Hidayah et al., 2022; Lukman et al., 2022; 
Hidayah et al., 2024). Moreover, NDVI trends fluctuate in response to meteorological 
factors, such as temperature and precipitation (Ichii et al., 2022). Based on the positive 
results, it was discovered that spatial and temporal changes in NDVI could be used as an 
observational proxy for exploring global, regional, and temporal changes in GPP.

The gross amount of organic matter produced by mangroves indicated the ability to 
absorb atmospheric CO2 and convert it to biomass through photosynthesis. Discovering the 

Figure 7. Linear regression models NDVI and GPP of Ujung Pangkah mangrove forest
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spatial and temporal variations of GPP in mangroves is crucial for accurately estimating 
the capacity of coastal ecosystems to store carbon. Climate conditions, vegetation types, 
and their spatial distribution, as well as factors that influence mangrove distribution, such 
as land-use practices and land cover conversion, primarily control spatial variations of 
GPP. Similarly, the seasonal phenology of vegetation and climate conditions influence the 
temporal variations of GPP (Cao et al., 2004; Nemani et al., 2003). 

The Importance of Mangrove GPP in Global Carbon Studies

The significance of studying the contribution of mangrove forests to carbon sequestration 
is heightened when considering the implications of global warming and climate change. 
Industrialized countries with high carbon emissions are strongly believed to be a major 
cause of global warming, which poses a significant threat to environmental sustainability 
and human well-being (Alongi, 2020). In order to proactively address the issue of global 
warming, numerous governments have implemented carbon-neutral policies that are 
centered around the concept of carbon reduction (Huang & Zhai, 2021; Chen et al., 2022). 
China has declared its climate objectives, which include reaching the peak of carbon 
emissions by 2030 and achieving carbon neutrality by 2060 (Zeng et al., 2022), whereas 
the European Union has set its goal of carbon neutrality by 2050 (Perissi & Jones, 2022). 

Blue carbon ecosystems (BCEs), which encompass mangrove forests, seagrass 
meadows, and tidal marshes, serve as carbon sinks and offer additional advantages, 
including protecting the coastline and improving fisheries. BCE sequestration is proposed as 
a natural system to address climate change and prevent the further impact of global warming 
(Hilmi et al., 2021; Mengis et al., 2023). On a global scale, BCEs have an estimated carbon 
storage capacity of around 30,000 Tg C and conserving these ecosystems prevents annual 
emissions of 141-466 Tg CO2 equivalent (CO2e) (Macreadie et al., 2021). It is imperative 
that mangrove forests provide an essential function in the global carbon cycle; therefore, 
accurately estimating carbon stock and release to comprehend the carbon budget in BCEs 
is vital (Zhao et al., 2023). 

In this regard, mangrove GPP studies, which can reflect the capacity of carbon 
capture and sequestration potential by coastal vegetation, play an important role. Properly 
estimating GPP in mangrove forests is vital for monitoring and evaluating the growth of 
vegetation, carbon balance, and carbon conversion (Zhu et al., 2021; Paramanik et al., 
2022). In addition, GPP studies offer extensive significance in surveilling the terrestrial 
carbon cycle and determining the magnitude of carbon sources and sinks in the Earth system 
(Bertram et al., 2021; Zhu et al., 2021). Hence, by monitoring the spatial and temporal 
patterns of GPP, changes in the carbon budget at a regional level can be determined. This 
information can then be used as a scientific foundation for creating policies that aim to 
address climate adaptation and achieve carbon neutrality objectives.
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CONCLUSION

In conclusion, this study showed the use of Sentinel-2 image to estimate GPP in the 
mangrove forest of Ujung Pangkah, East Java, Indonesia. The results showed a significant 
increase in mangrove area, from 1187.63 ha in 2018 to approximately 1262.25 ha in 2022. 
This improvement has had a positive impact on mangroves’ ability to absorb carbon, as 
shown by an increase in average GPP from 1997.91 grC m-2 yr-1  to 2290.09 grC m-2 yr-1. 
Mangrove forest GPP fluctuations over time were determined by vegetation density. This 
was confirmed by the positive relationship between GPP and NDVI, which measured 
mangrove vegetation density through satellite image processing (R2>0.9, p<0.05). This 
study also emphasized that the application of remote sensing and GIS has the potential to 
improve and broaden the study of carbon dynamics, particularly GPP in mangrove forests, 
on a larger scale.
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